SIMULACIÓN NUMÉRICA DE YACIMIENTOS DE HIDROCARBUROS: PROGRAMA

a) OBJETIVOS Y CONTENIDOS

BLOQUE 1: Introducción a la simulación de yacimientos de hidrocarburos

OBJETIVOS ESPECÍFICOS:

- 1.1 Comprender los procesos básicos asociados a un yacimiento de hidrocarburos
- 1.2 Conocer los parámetros fundamentales para su caracterización

CONTENIDOS:

1.1: OBJETIVOS Y FINALIDAD DE LA SIMULACIÓN DE YACIMIENTOS DE HIDROCARBUROS

- Análisis de la producción histórica de un yacimiento de hidrocarburos
- Predicción del comportamiento del yacimiento bajo distintos modos de explotación

1.2: CARACTERIZACIÓN DE LOS PROCESOS BÁSICOS ASOCIADOS A UN YACIMIENTO DE HIDROCARBUROS

- Análisis básico de yacimientos
 - Requisitos previos a la simulación de yacimientos
 - Modelos incluidos en los simuladores
- Principales elementos de la caracterización

1.3: ESCALAS CONCEPTUALES DE LOS YACIMIENTOS DE HIDROCARBUROS

- Toma de muestras del yacimiento. Escalas
- Integración de unidades. Unidad de flujo

1.4: ESTRUCTURA DEL YACIMIENTO

- Principales tipos de yacimientos
- Interfase agua-petróleo
- Interfase gas-petróleo

1.5: PROPIEDADES DEL FLUIDO

- Interacción entre fluidos
- Tipos de fluidos. Caracterización de los fluidos
- Resultados de un test tipo PVT (pressure volume test)

1.6: INTERACCIÓN ROCA-FLUIDO

- Porosidad. Permeabilidad. Saturación. Ley de Darcy
- Permeabilidad relativa y presión capilar
- Viscosidad

BLOQUE 2: Ecuaciones diferenciales del flujo en medio poroso en yacimientos de hidrocarburos

OBJETIVOS ESPECÍFICOS:

- 2.1 Comprender los modelos fundamentales de simulación en yacimientos de hidrocarburos
- 2.2 Plantear y desarrollar las ecuaciones diferenciales de flujo de hidrocarburos en medio poroso

CONTENIDOS:

2.1: MODELOS DE SIMULACIÓN

Modelo Black-Oil. Modelo composicional

2.2: LEYES DE CONSERVACIÓN.

- Conservación de la masa
- Conservación de la energía
- Conservación del momento

2.3: ECUACIONES DE FLUJO MONOFÁSICO PARA UN FLUIDO COMPRESIBLE

- Monodimensional
- Bi v tridimensional
- Condiciones de contorno
- Condiciones iniciales

2.4: ECUACIONES DE FLUJO PARA FLUIDOS COMPRESIBLES INMISCIBLES

- Planteamiento flujo trifásico
- Formulación IMPES (implicit pressure, explicit saturation/concentration)

2.5: FLUJO CON CAMBIO DE FASE

- El modelo general composicional
- El modelo Black-Oil
- El modelo composicional limitado

BLOQUE 3: Bases de la solución numérica de las ecuaciones de flujo en yacimientos de hidrocarburos

OBJETIVOS ESPECÍFICOS:

- 3.1 Aplicar el método de diferencias finitas a la simulación del flujo en yacimientos de hidrocarburos
- 3.2 Plantear soluciones a los problemas de convección-difusión

CONTENIDOS:

3.1: APLICACIÓN DEL MÉTODO DE DIFERENCIAS FINITAS

- Discretización espacial: esquema en diferencias finitas centradas, progresivas y regresivas
- Discretización temporal: esquema implícito y explícito
- Solución numérica de sistemas de ecuaciones lineales

3.2: ASPECTOS NUMÉRICOS ASOCIADOS

- Estabilidad
- Error de truncamiento
- Dispersión numérica
- Efectos de orientación del mallado
- Efecto del tamaño de la celda

BLOQUE 4: Solución numérica de problemas de flujo bifásico

OBJETIVOS ESPECÍFICOS:

- 4.1 Discretizar la ecuación diferencial de flujo para fluidos compresibles inmiscibles.
- 4.2 Resolver numéricamente la ecuación diferencial de flujo con varias fases
- 4.3 Aplicar los conceptos de movilidades implícitas y semi-implícitas

CONTENIDOS:

4.1: DISCRETIZACIÓN DE LAS ECUACIONES DE FLUJO

- Discretización espacial
- Discretización temporal

4.2: SOLUCIÓN NUMÉRICA SIMULTÁNEA

- Método explícito
- Método implícito

4.3: SOLUCIÓN NUMÉRICA SECUENCIAL

- Método de Leapfrog.
- Otros métodos de solución numérica secuencial.
- Método de solución secuencial utilizando velocidad total.

4.4: MOVILIDADES

- Implícitas
- Semi-implícitas

4.5: CARACTERIZACIÓN DE POZOS

- Término fuente
- Radio de celda equivalente
- Restricción explícita de la presión
- Restricción del caudal de extracción
- Restricción del caudal de inyección
- Restricción del GOR/WOR (Gas Oil Ratio / Water Oil Ratio)

4.6: LA ECUACIÓN DE BALANCE DE MATERIA

- Planteamiento de las ecuaciones.
 - Balance de materia de Crudo
 - Balance de materia de Gas

BLOQUE 5: Problemas inversos de flujo bifásico

OBJETIVOS ESPECÍFICOS:

- 5.1 Comprender los problemas inversos de flujo bifásico
- 5.2 Conocer las diferentes metodologías de solución del problema inverso
- 5.3 Aplicar estas metodologías para resolver problemas inversos de flujo bifásico

CONTENIDOS:

5.1: INTRODUCCIÓN AL PROBLEMA INVERSO

- Permeabilidad efectiva. Permeabilidad equivalente y pseudopermeabilidad

5.2: METODOLOGÍA DE SOLUCIÓN DEL PROBLEMA INVERSO

- Cambio de escala monofásico: métodos analíticos y métodos numéricos.
- Cambio de escala bifásico: métodos de estado estacionario y métodos de estado no estacionario.

BLOQUE 6: Aplicación a problemas reales de flujo bifásico

OBJETIVOS ESPECÍFICOS:

- 6.1 Definir el modelo conceptual del flujo en un yacimiento de hidrocarburos
- 6.2 Aplicar la simulación numérica a distintos casos reales

CONTENIDOS:

6.1: PREPARACIÓN DE DATOS PARA UN ESTUDIO TÍPICO

- Preparación de datos.
- Corrección de la presión
- Selección del tipo de simulación.

6.2: CARACTERIZACIÓN DE LA ESTRUCTURA DEL YACIMIENTO

- Cartografía 3D
- Preparación del mallado: mallado local, mallado híbrido.
- Refinamiento.

6.3: CALIBRACIÓN DEL MODELO DEL YACIMIENTO

Ajuste histórico

b) BIBLIOGRAFÍA

BÁSICA:

- BEAR, J. Dynamics of Fluids in Porous Media. Elsevier. Nueva York, 1972.
- CHAVENT G.; JAFFRÉ J. Mathematical Models and Finite Elements for Reservoir Simulation. Elsevier. Amsterdam, 1991.
- CRAFT, B.C.; HAWKINS, M.F. Ingeniería aplicada de yacimientos petrolíferos. Tecnos. Madrid, 1977.
- FANCHI, J.R. Principles of Applied Reservoir Simulation. Gulf Publishing Company Houston. Texas, 1997.
- PEACEMAN, D.W. Fundamentals of Numerical Reservoir Simulation. Elsevier. Amsterdam, 1977.

COMPLEMENTARIA:

- CRICHLOW, H.B. Modern Reservoir Enginnering. A Simulation Approach. Prentice Hall. Nueva Jersey, 1977
- DAKE, L.P. Fundamentals of Reservoir Engineering. Elsevier. Amsterdam, 1998.
- GAGNEUX, G and MADAUNE-TORT, M. Analyse mathématique de modèles non linéaires de l'ingénierie pétrolière. Springer. Berlin, 1996.
- THOMAS, G.W. Principles of Hydrocarbon Reservoir Simulation. IHRDC Publishers. Boston, 1982.

c) PRÁCTICAS EN GRUPOS REDUCIDOS

No hay.

Edición 1: 2004-09-03

d) PROCEDIMIENTO DE EVALUACIÓN

1.: Nota previa:

La realización de los trabajos que se establezcan en cada momento en el aula de informática –prácticas de laboratorio– es obligatoria para todos los alumnos que se matriculen en la asignatura.

2.: Procedimiento de evaluación. Existen dos posibilidades.

2.1.: Mediante examen final

Se realizará un examen teórico-práctico que incluirá preguntas y problemas de todo el programa sobre un total de 10 puntos. Los alumnos que alcancen una puntuación mínima de 5 puntos, si han superado los trabajos de laboratorio, obtendrán el aprobado de la asignatura.

2.2.: Mediante examen, cuestionarios, ejercicios propuestos y seminarios

En esta opción, para aprobar la asignatura habrá que obtener en el examen final al menos una nota de 4 puntos. En ese caso, el alumno podrá alcanzar la puntuación de 5 puntos añadiendo a la nota obtenida en el examen final los puntos obtenidos en las siguientes actividades:

- a) Aquellos alumnos que realicen de forma correcta los cuestionarios que se propongan a lo largo del curso, podrán obtener un máximo de 1 punto, a añadir a la nota del examen.
- b) También se podrá obtener 1 punto adicional por la realización de cada uno de los seminarios que se organicen durante el curso. (Cada alumno sólo podrá participar en un seminario)
- c) Por la realización y entrega, antes del examen, de los ejercicios propuestos se podrán obtener 0,5 puntos adicionales.