Mecánica de Medios Continuos. Ingeniero Geólogo (curso 3.º). 2002-2003

Profesorado: J.M.ª Goicolea Ruigómez, J. Rodríguez Soler

Depto. Mecánica de medios continuos y teoría de estructuras, E.T.S. Ingenieros de Caminos, UPM

Tel. 91-3366767

E-correo: Goicolea@mecanica.upm.es http://w3.mecanica.upm.es/mmc-ig

N°	Nombre Capítulo y contenido	h. teoría	h. Práct.	h. total
0	CÁLCULO VECTORIAL Y TENSORIAL	teoria	Flact.	
	Algebra vectorial. Bases y coordenadas. Productos escalar y vectorial. Tensores. Autovalores. Funciones de vectores y tensores. Derivadas. Teoremas integrales. ANÁLISIS DE TENSIONES	4	3	7
1	Concepto de medio continuo. Masa y densidad. Fuerzas y momentos. Fuerzas sobre una superficie. Tensor de tensiones de Cauchy. Condiciones de equilibrio. Tensiones principales. Tensiones normales y de corte. Presión y tensión desviadora. Representación mediante el circulo de Mohr. Tensión octahédrica. Espacio de tensiones principales.	5	5	10
3	CINEMÁTICA Configuraciones, movimiento y deformación. Gradiente de deformación. Deformaciones homogéneas. Medidas de la deformación. Pequeñas deformaciones. Ecuaciones de compatibilidad en deformaciones. Derivadas materiales y espaciales. Iransformación de áreas y superficies. LEYES DE BALANCE Y CONSERVACIÓN	5	5	10
	Conservación de la masa. Balance de cantidad de movimiento. Balance de momento cinético. Balance de energía. Descripciones locales eulerianas y lagrangianas. Formulaciones según volumen de control y volumen material. Teorema de transporte de Reynolds. Objetividad y principios generales de las ecuaciones constitutivas.	3	3	6
4	Concepto de elasticidad Flasticidad lineal: Ley de Hooke generalizada. Constantes de Lame. Planteamiento del problema elastico lineal. Ecuaciones de Navier. Ecuaciones de Beltrami-Michell. Termoelasticidad. Elasticidad no lineal. Materiales hiperelasticos. Principios variacionales en elasticidad. Teoremas energéticos.	б	б	12
	1.er semestre			45

5	APLICACIONES EN ELASTICIDAD PLANA Deformación plana. Tensión plana. El problema elástico lineal en elasticidad bidimensional. Líneas isostáticas, isoclinas e isobaras.	3	3	6
6	APLICACIONES DINÁMICAS: ONDAS Y VIBRACIONES			
	Ecuación dinámica de Cauchy. Ecuación de ondas. Ondas elásticas planas. Ondas de superficie de Rayleigh. Ondas de Love.	3	3	6
7	PLASTICIDAD Y VISCOPLASTICIDAD			
	Comportamiento anelástico. Modelos unidimensionales de plasticidad y fricción. Plasticidad en tres dimensiones. Superficies de fluencia y líneas de fallo. Modelos de daño continuo. Comportamiento viscoplástico.	4	4	8
8	VISCOELASTICIDAD Y MATERIALES REOLÓGICOS			
	Comportamiento reológico de los materiales. Fluidos perfectos y fluidos viscosos Newtonianos. Viscoelasticidad lineal. Funciones de fluencia y relajación. Modelos reológicos. Planteamiento general del problema viscoelástico.	3	3	6
9	MECÁNICA DE LA FRACTURA			
	Comportamiento frágil y dúctil de los materiales. Fisuras. Modos de fisuración. Concentración de tensiones. Factor de intensidad de tensiones. Tenacidad. Energía de fractura. Teoría de Griffith. Fractura dúctil. Fatiga.	6	5	11
10	SOLUCIONES NUMÉRICAS MEDIANTE EL MÉTODO DE LOS ELEMENTOS FINITOS			
	Planteamiento del problema (formulación fuerte). Formulación débil de las ecuaciones; principio de los trabajos virtuales. Aproximación mediante funciones de forma. Formulación matricial. Tipos de elementos finitos más usuales. Ejemplos prácticos.	4	4	8
	2.° semestre			45
	Total			90

Exámenes:

1.er parcial temas 0-4

2.° parcial temas 5-10

Horario

Martes 8:30-9:30, Miércoles: 8:30-10:30

Bibliografía básica

X. Oliver, C. Agelet, "Mecánica de medios continuos para ingenieros", edicions UPC, 2000 G.T. Mase, G.E. Mase, "Continuum mechanics for engineers (2nd. edition)", CRC Press, 1999

Bibliografía complementaria

J. Díaz del Valle, "Mecánica de los medios continuos", ETS lng. Caminos de Santander, 1989

A. Valiente, "Comportamiento mecánico de materiales; Elasticidad y viscoelasticidad". E.T.S. Ing. Caminos UPM, 2000

A.J.M. Spencer, "Continuum mechanics", Longman, 1980

Y.C. Fung, P. Tong, "Classical and computational solid mechanics", World scientific, 2001

S. Suresh, "Fatigue of materials", Cambridge University Press, 1991