

DEPARTAMENTO DE INGENIERÍA DE MATERIALES

PROGRAMA DE LA ASIGNATURA

PREPARACIÓN DEL CARBÓN PARA CENTRALES TÉRMICAS

Curso: 50Créditos totalesCuatrimestre: 10Teóricos : 2,1Carácter: Libre ElecciónPrácticos : 2,4

PLAN DE ESTUDIOS 1996

Edición 1: 2005-09-20

PREPARACIÓN DEL CARBÓN PARA CENTRALES TÉRMICAS: PROGRAMA

a) OBJETIVOS Y CONTENIDOS

BLOQUE 1: Introducción y parámetros que caracterizan un carbón térmico

OBJETIVOS ESPECÍFICOS

- 1.1 Conocer los distintos tipos de carbones térmicos y sus características.
- 1.2 Comprender como la calidad del carbón afecta a los procesos de generación de energía.
- 1.3 Comprender la necesidad de mejorar la calidad del carbón.

CONTENIDOS

1.1: OBJETO DE LA ASIGNATURA

1.2: PARÁMETROS FÍSICOS Y QUIMICOS QUE CARACTERIZAN UN CARBÓN

- Parámetros físicos
- Parámetros químicos
- Calidad del carbón

1.3: RENDIMIENTO EN LAS OPERACIONES DE MEJORA

BLOQUE 2: Técnicas de molienda para el carbón

OBJETIVOS ESPECÍFICOS

- 2.1 Comprender los parámetros que definen la molienda de un carbón.
- 2.2 Comprender el índice de Hardgrove y su aplicación.
- 2.3 Comprender las máquinas de trituración utilizadas en el carbón.
- 2.4 Comprender las máquinas de molienda de carbón.

CONTENIDOS

2.1: MOLTURABILIDAD DEL CARBÓN. ÍNDICE DE HARDGROVE

- Parámetros que caracterizan un carbón molido
- Consumo de energía en la molienda
- Índice de Hardgrove: su significado y aplicación

2.2: TRITURACIÓN

- Máquinas y procesos de trituración de carbón

- Estimación de la potencia de motores y tamaño de máquinas

2.3: MOLIENDA CON MOLINOS VERTICALES Y CLASICOS

- Molinos con cuerpos moledores libres
- Molinos con cuerpos moledores guiados
- Control del tamaño del producto molido
- Condiciones en que debe realizarse la molienda

BLOQUE 3: Procesos de mejora del carbón

OBJETIVOS ESPECÍFICOS

- 3.1 Comprender el principio de funcionamiento de los sistemas de mejora en seco.
- 3.2 Conocer los principales equipos de mejora en seco.
- 3.3 Comprender el principio de funcionamiento de los sistemas de mejora en húmedo.
- 3.3 Conocer los principales equipos de mejora en húmedo.
- 3.4 Conocer las curvas de lavabilidad y su aplicación para interpretar la mejora de un carbón.

CONTENIDOS

3.1: MEJORA POR PROCESOS FÍSICOS EN SECO

- Principios de los métodos físicos en seco
- Equipos
- Esquemas típicos

3.2: MEJORA POR PROCESOS FÍSICOS O QUÍMICO-FÍSICOS EN HÚMEDO

- Principios de los métodos físicos en húmedo
- Sistemas basados en los medios densos
- Sistemas basados en arrastre o aceleración diferencial
- Principios de los métodos físico-químicos en húmedo
- Sistemas basados en la mojabilidad por aceites y en la flotación

3.3: CONTROL DE LA MEJORA DE LA CALIDAD DE UN CARBÓN MEDIANTE CURVAS DE LAVABILIDAD

- Curvas densimétricas y de cenizas
- Imperfección
- Curvas de Mayer
- Curvas de facilidad de lavado

BLOQUE 4: Control medioambiental de los procesos de mejora del carbón

OBJETIVOS ESPECÍFICOS

- 4.1 Conocer las implicaciones medioambientales de estos procesos.
- 4.2 Conocer las técnicas para control del polvo.
- 4.3 Conocer las técnicas de purificación de aguas y decantación.
- 4.4 Conocer las técnicas de filtrado.
- 4.5 Conocer las tendencias en cuanto a valorización de residuos.

CONTENIDOS

4.1: CAPTACIÓN DE POLVO

- Tipos principales de captadores de polvo y sus principios
- Principales equipos de captación de polvo

4.2: PURIFICACIÓN DE AGUAS

- Principios de la purificación por decantación
- Decantadores: tipos y funcionamiento
- Floculación y coagulación
- Purificación química

4.3: SISTEMAS DE FILTRADO

- Principios de la filtración
- Filtros de vacío
- Filtros de presión

4.4: CARACTERIZACIÓN DE LOS RESIDUOS Y SU VALORIZACIÓN

- Tendencias actuales en el aprovechamiento de residuos
- Características de los residuos para determinadas aplicaciones
- Posible mejora de las características de los residuos

b) BIBLIOGRAFÍA

BÁSICA:

- ÁLVAREZ, R. Trituración, molienda y clasificación (apuntes). Fundación Gómez-Pardo. Madrid. 2000.
- BLAZY, P. El beneficio de los minerales. Rocas y Minerales. Madrid. 1977.
- GARCÍA GARZÓN, J. Los métodos de concentración basados en: la gravedad, el magnetismo y la electrostática (apuntes). Fundación Gómez-Pardo. Madrid. 1994.
- GÓMEZ-LIMÓN, D. Concentración por flotación (apuntes). Fundación Gómez-Pardo. Madrid. 2000.
- KELLY, E.G.; SPOTTISWOOD, D. J. Introducción al procesamiento de minerales. Limusa. México. 1990.

COMPLEMENTARIA

- JAIN, S. K. Ore processing. Balquema. Rotterdam, 1987.
- MULAR, A.L.; BHAPPU, R.B. *Mineral processing plant design*. Society of Mining Engineers. AIME. New York.1980.
- WEISS, N.L. SME Mineral processing handbook. Society of Mining Engineers. AIME. New York. 1985.
- WILLS, B.A.. Mineral processing technology. Pergamon Press. Oxford. 1988.

c) PRÁCTICAS EN GRUPOS REDUCIDOS

Se realizarán 12 horas de prácticas de Laboratorio en grupos reducidos.

d) PROCEDIMIENTO DE EVALUACIÓN

La evaluación se realizará mediante una prueba de preguntas cortas (50% de la nota total), combinada con el seguimiento de las clases por los alumnos (25%) y las prácticas de laboratorio (25%).