

DEPARTAMENTO DE SISTEMAS ENERGÉTICOS

PROGRAMA DE LA ASIGNATURA

CICLO DEL COMBUSTIBLE NUCLEAR Y PROTECCIÓN RADIOLÓGICA

Curso: 4ºCréditos totalesCuatrimestre: 1ºTeóricos : 3Carácter: OptativaPrácticos : 3

PLAN DE ESTUDIOS 1996

Edición 1: 2003-09-22

CICLO DEL COMBUSTIBLE NUCLEAR Y PROTECCIÓN RADIOLÓGICA: PROGRAMA

a) OBJETIVOS Y CONTENIDOS

BLOQUE 1: Radiactividad y protección radiológica

OBJETIVOS ESPECÍFICOS:

- 1.1 Comprender la importancia de la radiactividad natural y la artificial.
- 1.2 Conocer las técnicas de protección radiológica.
- 1.3 Conocer las características básicas y aplicaciones de los detectores.

CONTENIDOS:

1.1: DESINTEGRACIONES RADIACTIVAS.

1.2: INTERACCIONES DE LA RADIACIÓN CON LA MATERIA.

- Interacciones con fotones.
- Interacciones con partículas β.
- Interacciones con partículas α.

1.3: EFECTOS BIOLÓGICOS DE LA RADIACIÓN, PROTECCIÓN RADIOLÓGICA.

- Efectos no-estocásticos.
- Efectos estocásticos.
- Protección radiológica.

1.4: DETECTORES DE PARTÍCULAS RADIACTIVAS.

- Características de los detectores.
- Tipos de detectores: Ionización, centelleo y semiconductores.

BLOQUE 2: Neutrónica básica. Tipos de reactores. Tipos de ciclos del combustible nuclear

OBJETIVOS ESPECÍFICOS:

- 2.1 Entender los conceptos de fisión, criticidad y moderación.
- 2.2 Diferenciar las diferentes tecnologías de generación térmica nuclear en función de la composición del combustible que se utilice.
- 2.3 Aplicar los distintos tipos de ciclos para diseñar una estrategia de gestión de la energía nuclear.

CONTENIDOS:

2.1: NOCIONES BÁSICAS DE LA NEUTRÓNICA.

- Fisión, masa crítica.
- Especies físiles y fértiles.
- Enriquecimiento, moderación, quemado.
- Factor de conversión.
- Tipos de combustible según su composición: UO₂, MOX.

2.2: DESCRIPCIÓN DE LOS TIPOS DE REACTORES NUCLEARES.

- Térmicos: PWR, BWR, CANDU, AGR, GCR.
- Rápidos: FBR.

2.3: CICLOS DEL COMBUSTIBLE NUCLEAR.

- Ciclo abierto y ciclo cerrado.
- Combinación de ciclos con varios tipos de reactores.

BLOQUE 3: Primera parte del ciclo del combustible nuclear

OBJETIVOS ESPECÍFICOS:

- 3.1 Comprender la importancia relativa de los yacimientos de uranio y torio.
- 3.2 Comprender la teoría del transporte hidrotermal.
- 3.3 Conocer la dificultad de las operaciones relacionadas con la primera parte del ciclo del combustible nuclear debidas a la baja ley del mineral de uranio.
- 3.4 Comprender las técnicas de hidrometalurgia aplicadas al beneficio de los minerales de uranio.
- 3.5 Conocer los procesos de enriquecimiento del uranio en su isótopo U-235.
- 3.6 Conocer los requerimientos del combustible nuclear en cuanto a la pureza en uranio, impurezas y características mecánicas.

CONTENIDOS:

3.1: CRIADEROS DE MINERALES RADIACTIVOS.

- Tipos de yacimiento.
- Concepto de transporte hidrotermal.
- Reservas mundiales y españolas. Localización y valoración de yacimientos de minerales radiactivos.

3.2: FABRICACIÓN DE CONCENTRADOS DE URANIO Y TORIO.

Lixiviación ácida y alcalina.

3.3: PURIFICACIÓN DE CONCENTRADOS.

- Resinas de intercambio iónico.
- Disolventes orgánicos.

3.4: OBTENCIÓN DEL UF₄ Y UF₆.

- Métodos húmedo y seco.

3.5: ENRIQUECIMIENTO ISOTÓPICO.

- Difusión gaseosa, ultracentrifugación y métodos aerodinámicos.
- Concepto de cascada.
- Concepto de unidad de trabajo de separación.

3.6: FABRICACIÓN DE UO2 ENRIQUECIDO.

- Métodos ADU y AUC.

3.7: FABRICACIÓN DE ELEMENTOS COMBUSTIBLES.

- Reactores de agua a presión (PWR).
- Reactores de agua en ebullición (BWR).

BLOQUE 4: Segunda parte del ciclo del combustible nuclear

OBJETIVOS ESPECÍFICOS:

- 4.1 Comprender el comportamiento del combustible irradiado en función de su actividad y potencia residual.
- 4.2 Conocer las posibilidades de reprocesamiento del combustible irradiado.

CONTENIDOS:

4.1: CARACTERÍSTICAS DEL COMBUSTIBLE IRRADIADO.

- Actividad a corto y largo plazo.
- Calor residual.

4.2: RECUPERACIÓN DEL URANIO Y EL PLUTONIO DEL COMBUSTIBLE IRRADIADO.

- Proceso PUREX.
- Vitrificado de residuos del reprocesamiento.

BLOQUE 5: Gestión de los Residuos Radiactivos

OBJETIVOS ESPECÍFICOS:

- 5.1 Conocer la clasificación de residuos radiactivos.
- 5.2 Conocer el volumen y la actividad de los residuos generados en la primera y segunda partes del ciclo de combustible.

- 5.3 Conocer la importancia del almacenamiento seguro de los residuos radiactivos para minimizar su efecto sobre el medio ambiente.
- 5.4 Conocer las soluciones definitivas para RBMA.
- 5.5 Conocer las soluciones más viables para RAA y CG.
- 5.6 Comprender las consecuencias de considerar el CG como RAA.

CONTENIDOS:

5.1: CLASIFICACIÓN DE RESIDUOS RADIACTIVOS.

- Definición de Residuo Radiactivo.
- Legislación asociada.
- Clasificaciones según actividad, vida media, tipo de partículas que emiten los residuos etc.

5.2: SITUACIÓN EN ESPAÑA.

- Generación de residuos radiactivos y combustible gastado en España.
- Plan General de Residuos Radiactivos.

5.3: ALMACENAMIENTO DEFINITIVO DE RESIDUOS DE MEDIA Y BAJA ACTIVIDAD.

- Soluciones actualmente aceptadas.
- Instalaciones de El Cabril.

5.4: ALMACENAMIENTO TEMPORAL DE RESIDUOS DE ALTA ACTIVIDAD PROCEDENTES DE LA CENTRAL NUCLEAR.

- Soluciones actualmente aceptadas.
- Almacenamiento en seco.
- Almacenamiento húmedo: piscinas.
- Almacenamiento Temporal Centralizado (ATC) y Almacenamiento Temporal Individualizado.

5.5: GESTIÓN FINAL DEL COMBUSTIBLE GASTADO Y RESIDUOS DE ALTA ACTIVIDAD.

- Almacenamiento geológico profundo (AGP).
- Investigación de otras tecnologías.
- Transmutación de actínidos.

5.6: CLAUSURA Y DESMANTELAMIENTO DE INSTALACIONES RADIACTIVAS Y NUCLEARES.

- El caso de Vandellós I.
- Otras instalaciones del ciclo de combustible.

5.7: TRANSPORTE DE SUSTANCIAS RADIACTIVAS.

Normativa de seguridad.

5.8: ASPECTOS ECONÓMICOS Y FINANCIEROS DE LA GESTIÓN DE RESIDUOS RADIACTIVOS.

- Análisis económico del problema de los residuos radiactivos.

b) BIBLIOGRAFÍA

BÁSICA:

- KOERTING, V.; MULAS, J.; QUERAL, C.; Apuntes de la asignatura. Madrid. 2000.
- El ciclo del combustible nuclear, Publicación de la SNE. Madrid, 1997.
- TANG, Y.S.; SALING, J.H. *Radiactive Waste Management*. Hemisphere Publishing Corp. New York, 1990.

COMPLEMENTARIA:

- ECKHOFF, N.D. *The Nuclear Fuel Cycle*. College of Engineering, Kansas State University. Report 9801. 1998. http://www.mne.ksu.edu/~nde/ne697s98.htm
- The Safety of the Nuclear Fuel Cycle.OECD 1993. http://www.nea.fr/html/nsd/reports/93fuelcycle.pdf
- The Economics of the Nuclear Fuel Cycle. OECD 1994. http://www.nea.fr/html/ndd/reports/efc/
- QUERAL C.; KOERTING J. Apuntes de protección radiológica y detección. ETSI Minas, Madrid 1993.
- Quinto plan general de residuos radiactivos. Ministerio de Industria y Energía. Madrid, 1999.

c) PRÁCTICAS EN GRUPOS REDUCIDOS

Se realizaran un conjunto de prácticas en grupos reducidos de 16 alumnos en equipos de hasta 3 alumnos. A los alumnos se les entregará un informe de prácticas que deberán completar durante la realización de las mismas y que entregaran al finalizar las prácticas. Se incluirán cuestiones y ejercicios que los alumnos deberán resolver. No será necesario entregar ningún informe posterior.

d) MÉTODO DE EVALUACIÓN

La nota de la asignatura se compone de las notas de laboratorio (L), de examen – Teoría (T) y ejercicio (E) – y de ejercicios propuestos de forma aleatoria al final de clase. La nota no podrá ser superior o igual a cinco (aprobado) si la calificación de una de las partes es inferior a tres (3). La nota podrá ser complementada con trabajos opcionales, que requieren un informe y que serán evaluados, una vez aptos con 1 punto cada uno. Este complemento sólo se aplica cuando la nota de la evaluación es mayor o igual a cinco.

$$N = \frac{0.5 \times L + T + E}{2.5} + \frac{nea}{nte} + P_{extra}$$

Siendo: N= Nota de la asignatura. L= Nota del laboratorio. T= Examen de teoría. E= Ejercicio práctico. nea= número de ejercicios de clase aptos. nte= número total de ejercicios propuestos. P_{ext} = número de trabajos personales aptos (puntos extra).